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1. Introduction 
 

The extension of mathematical morphology operators to multi-valued functions, and in particular to color 
images, is neither direct nor general. In this paper I proposed a generalization of distance-based and lexicographical-
based approaches, allowing the extension of morphological operators to color images for any color representation (e.g. 
RGB, LSH and L*a*b*) and for any metric distance to a reference color. The performance of these morphological 
color operators will be illustrated by means of two applications: color  image  segmentation  and  indexing.  

Mathematical morphology is the application of lattice theory to spatial structures [12], in practice, the 
definition of morphological operators needs a totally ordered complete lattice structure, i.e., the possibility of defining 
an ordering relationship between the points to be processed. Therefore, the application of mathematical morphology to 
color images is difficult due to the vectorial nature of the color data. Fundamental references to works which have 
formalized the vector morphology theory are [14] [4] [17]. In the literature, many techniques have been proposed on 
the extension of mathematical morphology to color images according to different orderings. The marginal ordering or 
M-ordering is an ordering based on the usual point wise ordering (i.e., component by component independently). An 
other more interesting one is called conditional ordering or C-ordering, where the vectors are ordered by means of 
some marginal components selected sequentially according to different conditions (i.e. lexicographic ordering). The 
reduced ordering or R-ordering performs the ordering of vectors according to some scalars, computed from the 
components of each vector with respect to different measure criteria, typically distances or projections. Using an M-
ordering, we can introduce color vector values in the transformed image that are not present in the input image ("false 
colors") [14]. The application of C-ordering or R-ordering preserves the input color vectors and therefore is 
preferable for filtering applications. The C-ordering has been widely studied in the framework of color morphology, 
especially in a luminance/saturation/hue representation [9] [17] [5] [2]. The R-ordering has been used to define 
morphological operators by means of distances in [4]. In [11] was proposed a combination of an R-ordering and a C-
ordering, in fact my approach can be considered as a generalization of this interesting study. 

The aim of the first part of the paper is just to generalize the distance-based approaches and the 
lexicographical approaches in order to propose a general framework allowing the extension of morphological 
operators to color images for any color representation and for any metric distance. In fact, we introduce a 
generalization of mathematical morphology to multivariate functions according to a distance-to-origin-based 
interpretation of the notion of total ordering between the points of a complete lattice. In the second part of this study is 
considered the application of morphological color operators to color  image  segmentation  and  indexing.. 
 
2. Preliminaries 
 
2.1. Norms and distances 
 
Given an n-dimensional vector x=(x1x2 · · · xn), x ∈ Χ

n
 or x ∈ Ρ

n
, a vector norm ||x|| defined for x is a non-negative 

number (i.e., a function Ρ
n
 → Ρ+) satisfying the following three axioms: 1) ||x|| > 0 when x ≠ 0 and ||x|| = 0 iff x = 0;   2) 

||kx|| = |k|·||x|| for any scalar k; 3) ||x + y|| ≤ ||x|| + ||y||. The most common norm is the L2 norm or Euclidean norm, 

defined by ||x||2 = ∑n 2
kk=1

x , where |xk| denotes the complex modulus or the absolute value. The L1 norm of a 

complex vector x is given by  ||x||2 =∑ .   The third classical norm to be consider here is the Ln 2
kk=1

x ∞ which is 

defined by ||x||2 = maxk,1≤ k≤ n
2

kx . Given two real vectors x and y, the distance metric between the two points, denoted 

by d(x, y), is the mapping d : Ρ
n
×Ρ

n
 → Ρ+  which satisfies the following properties: 1) non-negativity (d(x, y)≥0, and 

identity d(x, y)≥0 ⇔ x = y), 2) commutability (d(x, y) = d(y, x)) and 3) triangular inequality (d(x, z) ≤ d(x, y)+ d(y, z)). 
In fact, a metric distance can be defined based on each vector norm proposed, hence the distance between two vectors is 
the norm of the difference, i.e. d(x, y) = ||x − y||. The L2 norm distance is the Euclidean distance. The L1 and L∞  norm 
distances are also called the Manhattan distance and the maximum distance, respectively. The Mahalanobis distance 
is a special case of the quadratic-form generalized distance metric in which the transform matrix is given by the 
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covariance matrix Γ obtained from a training set of data that represents the reliability or scale of the measurement in 
each direction. The Mahalanobis distance between two vectors is given by ||x − y||M = (x − y)TΓ−1(x − y). It must be 
reminded that if x and y are n-dimensional vectors then the covariance matrix Γ is an n×n matrix. In the special case 
when all the vector components are statistically independent, but have unequal variances , Γ is a diagonal matrix. In 2

kσ

this case, the Mahalanobis distance reduces to ||x − y||M =
( )∑

2
n k k

2k=1
k

x - y
σ  

   

  

 

2.2. Color space representations 
 

The first issue to be addressed in order to apply mathematical morphology to color images is the color space 
representation. The most direct way to manipulate digital color images is to work on the RGB color space (the usual 
sensors in digital cameras are RGB CCD's). A color image f is a vector function f(x) = (fR(x), fG(x), fB(x)) ∈ Ζ

3
, x∈Ζ

2
, 

where fR(x), fG(x), fB(x) are, respectively, the red, green, and blue channels at point x. 
However, the RGB color representation has some drawbacks: components are strongly correlated, lack of 

human interpretation, non uniformity, etc. A polar representation with the variables luminance, saturation et hue 
(lum/sat/hue) allows us to solve these problems. The HLS system is the most popular lum/sat/hue triplet. In spite of its 
popularity, the HLS representation (and other classical ones like HSV) often yields unsatisfactory results, for 
quantitative processing at least, because its luminance and saturation expressions are not norms, so average values, or 
distances, are falsified. In addition, these two components are not independent, which is a drawback for vector 
decomposition. The comprehensive analysis of this question was done by Serra [16]. The drawbacks of the HLS system 
can be overcome by various alternative representations, according to different norms used to define the luminance and 
the saturation. The L1 norm system has already been introduced in [15, 1] as follows: 

( )

( )

( )

( )




  ≥ 
 
  ≤

 


 
   

1
3

3
2
3
2

1 (-1) 2
2 2

λ

l = max + med + min                         

max - l     if   l med                   
s =

l - max      if   l med                  

h = k λ+ - max  + min - med
s

 

 
where max, med and min refer the maximum, the   median   and   the   minimum   of  the   RGB   color of the current 
point (r, g, b), k is the angle unit (π/3 for radians and 42 to work on 256 grey levels) and λ=0, if r > g ≥ b; 1, if g ≥ r > b; 
2, if g > b ≥ r; 3, if b ≥ g > r; 4, if  b > r ≥ g; 5, if r ≥ b > g allows to change to the color sector. For each pixel, the 
luminance (or brightness) represents the total quantity of the intensity of light, the saturation represents a measurement 
of purity of the color, and the hue is an index representing the dominant wavelength (perceived color) of the light.  
We can also compare it with the L*a*b* color space, the classical representation in colorimetry. The principal 
advantage of the L*a*b* space is its perceptual uniformity. However, the transformation from RGB to L*a*b* space is 
done by first transforming to the XYZ space, and then to the L*a*b* space [19]. The XYZ coordinates are depending on 
the device-specific RGB primaries and on the white point of illuminant. In most of situations, the illumination 
conditions are unknown and therefore a hypothesis must be made.  

If the most common option, the CIE D65 daylight illuminant, is  chosen then the exact calculations are: 

 if

if


     

  
≤  
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where  
3
1
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represents X, Y or Z (the tristimulus values of the sample) and Xn, Yn or Zn are the tristimulus values of the adapting 
reference white point, i.e., for CIE D65 daylight illuminant are Xn = 0.950; Yn = 1.000; Zn = 1.089. The L* coordinate 
provides a correlate to perceived lightness. The* and b* coordinates approximate respectively the red-green and 
yellow-blue of an opponent color space. Achromatic stimuli, such as whites, grays and blacks have values of 0 for both 
a* and b*. 

Let  f = (fR,  fG,  fB) be a color image. Then its grey-level components in the improved LSH color space are  
(fL,  fS,  fH)  and in the L*a*b* color space are (fL*,  fa*,  fb*).  
 
2.3. Color distances  
 

Let ck = (ck
U, ck

V, ck
W) be the color point k in any generic color space UVW (e.g. in LSH ck = (ck

L, ck
S, ck

H)). 
We can now define the color distance between two color vectors i and j as || ci − cj||∆UVW where ∆ is a particular metric. 
The four metric distances above recalled can be applied to color vectors according to the different color space 

representations, e.g. in RGB using L2  we have  || ci − cj||2RGB = ( ) ( ) ( )222 c-cc-cc-c B
j

B
i

G
j

G
i

R
j

R
i ++ . From the point of 

view of mathematical morphology, some  issues must be taken into account. The value sets of functions associated to 
the RGB components, to the L*a*b* components and to the luminance and saturation components of the LSH 
representation are complete totally ordered lattices. The hue should be considered as a special case. The hue component 
is an angular function defined on the unit circle C, which has no partial ordering.  For the hue, the angular difference [9, 
6] is defined by hi ÷ hj =|hi − hj|, if |hi − hj| ≤ 180° or hi ÷ hj =360°−|hi − hj|, if |hi − hj| >180°. 

Therefore, for all the color metric distances in LSH, the term associated to the hue must use the angular 
difference, e.g. || ci − cj||1LSH = |ci

L- cj
L|+|ci

S- cj
S|+|ci

H÷ cj
H|. On the other hand, it is well known the instability of the hue 

component for the low saturation points (this is an important issue to build hue-based distances, gradients, ordering, 
etc.). In order to cope with this drawback, the different solutions are generally based on a weighting of the hue by the 
saturation [3, 5, 2]. The simplest technique is to multiply the angular difference by the average saturation, i.e.  

(1/2)(ci
S-cj

S )|ci
H÷ cj

H| 
As suggested in [3], other more sophisticated saturation-based weighing functions can be applied (e.g. 

sigmoid). Moreover, concerning the hue component manipulation, it is possible to fix an origin on the unit circle, 
denoted by h0. We can define now a h0-centered hue function by computing for each point i the value 
(hi÷h0)(x)=hi(x)÷h0. The co-domain set of this function (hi÷h0)(x) is an ordered set and therefore leads to a complete 
totally ordered lattice. 

Before applying these color distances to define morphological operators, a relevance analysis of the alternative 
distances shall be made. Firstly, the L∞ norm distances could cause serious artifacts in the filtered color images because 
color vectors will be ordered according to only one of the components which can change for a set of points. It can be 
supposed that the results according to L1 or L2 will be relatively similar. In fact, the Mahalanobis distance can be 
interpreted as a generalization of them with the advantage of setting different weights for the components. Moreover it 
can be considered that, in the three color representations, the components are statistically independent and the 
Mahalanobis distance can be rewritten as a weighting distance, i.e. 

  ( ) ( ) (2 2U U V V W W
i j 1 i j 2 i j 3 i j

UVW
M(ω ,ω ,ω )1 2 3

c - c = ω c - c +ω c - c +ω c - c )2 .  

 
3. Distances-based morphological color operators 

 
The extension of morphological operators to color images based on lexicographical cascades from a LSH 

representation in norm L1 is presented in references [1,2]. This approach is going further and is proposing a generic 
framework valid for any color representation and is adding the flexibility of a "reference color"-based morphology. 
In fact, after defining as reference the maximum gray value, the grayscale morphology can be interpreted in terms of 
distances to this reference: the dilatation δ tends to move toward this reference (i.e. δ is the value which have 
minimal distance to the reference within the structuring element) and the erosion ε away from it (i.e. ε is the value 
with maximal distance). This paradigm is directly applicable to color images (after fixing the color representation, 
the reference color c0 and the color distance || • ||) by defining the following ordering for two color points: ci < cj 
⇔||ci − c0|| >||cj − c0||. But this is only a partial ordering, i.e., two or more distinct color vectors within the structuring 
element can be equidistant from the reference. In order to have a total ordering, this primary reduced ordering must 
be completed with a lexicographical cascade.  

 
3.1. Total orderings  using distances  completed with lexicographical cascades  
 
 The Ω-ordering or <Ω  is defined as: ci <Ω cj  iff: 
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or

and

or

and

and and

∆ ∆
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0 0

0 0

i j

i j

V V
i j
V V U U
i j i j
V V U U W W
i j i j i j

UVW UVW    
>

UVW UVW
=

c - c c - c

c - c c - c

c < c                                                   
c = c      c < c                               
c = c       c = c      c < c    








    

 

 This lexicographical cascade is denoted compactly by ( )V U W→
0∆ >UVW

, cΩ → .  In this case, the priority is 
given to the component V, then to U and finally to W. Obviously, it is possible to define other orders for imposing a 
dominant role to any other of the vector components. To simplify the number of alternatives, and based on the best 
results obtained from our previous works on lexicographical cascades, it is better to fix the ordering of the 
components for the three color spaces representations as follows: 1) > (G → R → B), 2) (L → S → − (H ÷ h> 0)) 
(the origin of the hues correspond or is the same as for c0) and 3) (L> *→ a* → b*) 
  
3.2. Morphological color operators 
 
 Once these orderings have been established, the entire pyramid of the morphological color operators is 
defined in the standard way. The color erosion of an image f at pixel x by the structuring element B of size n is 
εΩ,nB(f)(x) = {f(y)| f(y)=infΩ[f(z)], z ∈ n(Bx)}, where infΩ is the infimum according to the total ordering Ω.  The 
corresponding color dilation δΩ,nB is obtained by replacing the infΩ by the supΩ, i.e., δΩ,nB(f)(x) = {f(y)| f(y)= 
supΩ[f(z)], z ∈ n(Bx)}. A color opening is an erosion followed by a dilation, i.e., γΩ,nB(f)= δΩ,nB(εΩ,nB(f)), and a color 
closing is a dilation followed by an erosion, i.e. φΩ,nB(f)= εΩ,nB(δΩ,nB(f)). Once the color opening and closing are 
defined it is obvious how to extend other classical operators like the alternate sequential filters, i.e. 
ASF(f)Ω,nB=φΩ,nBγΩ,nB · · · φΩ,2BγΩ,2BφΩ,BγΩ,B(f). Moreover, using a color distance (which can be different of the 
distance associated to the ordering Ω) to calculate the image distance d, given by difference point-by-point of two 
color images d(x) = ||f (x), g(x)||, it easy to define the morphological gradient, i.e., ζn(f) = || δΩ,B(f), εΩ,B(f)||, and the 
top-hat transformation, i.e., ρ+

Ω,nB(f) = ||f, γΩ,B(f)||. In addition, the extension of the operators "by reconstruction" 
can be implemented using the color geodesic dilation which is based on restricting the iterative dilation of a function 
marker m by B to a function reference f [18], i.e., δΩn(m, f)=δΩ1δΩn-1(m, f), where δΩ1(m, f)= δΩ,B(m)ΛΩ f. The color 
reconstruction by dilation is defined by γΩrec(m, f) = δΩi(m, f), such that δΩi(m, f)= δΩi+1(m, f) (idempotence). 
  
4. Experimental results for distances-based morphological color operators 
 
 In figure 1 is given a comparison of the results obtained for a color opening by reconstruction γΩ(f) of the 
image "ChrismasTree". As we can observe, the results are absolutely different according to the distance-based total 
ordering chosen. Only examples for the L2 and the Mahalanobis distance are shown. The orderings based on L∞ 
yield to very unsatisfactory visual results and the results for L1 norm distances are almost equal to those for L2. Note 
also the flexibility of the approach, for instance, in RGB the result of the opening for L2 distance to the origin 
(255,0,0) (pure red), which suppresses all the small red objects, is very different of the Mahalonobis distance with 
weights (1,0,0) (the R component is exclusively considered) to the same origin. On the other hand, we can observe 
that the orderings with distances including chromatic components (i.e. h, a* and b*) produce poor results. Moreover 
the choice of the origin is not easily understandably for the a* and b* components. Even if the Euclidean distance in 
the L*a*b* color space has interesting perceptual properties, we can remark that for the implementation of 
morphological operators the most important issue is in fact the choice of the origin. Hence, the use of the L2 distance 
in LSH or L*a*b* should be considered for feature extraction operators according to a specific reference color. We 
can remark also that, in order to filter in a general way the structures of a natural color image, the opening to remove 
all the bright objects is visually better for ||•||2RGB, c0=(255,255,255) than for ||•|| . The ( )0 255, 255, -LSH      

 ,   
M(1, 1, 0)

c

luminance and saturation components allow us therefore a better control of the significant components than the RGB 
components. 
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a 

original image f 
 
 
 

b 
||•||2RGB, c0=(255,255,255)   

c 
||•||2RGB, c0=(255,0,0)   

 
d 

||•||2RGB, c0=(255,-,-)   
 
 

e 
||•||2Lab,c0=(255,128,128) 

 

f 
||•||  ( )0 255, 0, -Lab       

M(1,1,0)
 ,   c

 
g 

||•||2LSH, c0=(255,128,128)    
 
 

h 
||•||    ( )0 255, 255, -LSH      

M(1,1,0)
 ,   c

i 
||•||  ( )0 255, 0, -LSH      

M(1,1,0)
 ,   c

Figure 1. 
Comparison of color opening by reconstruction γΩ(f) for the original image f "ChrismasTree" (the 
marker is an erosion εΩ,nB(f) where the structuring element B is a square of size n=20) according to 

different distance-based total orderings. 
 
5. Morphological image indexing based on edge extraction 
 
 One of the simplest morphological contour extraction methods is the morphological gradient: basically it 
consists of constructing an edge intensity map of the image as the difference between the local dilation and the local 
erosion at each image pixel (the word  “local” being induced by the use of a structuring element with finite spatial 
support).  
 The edge intensity map consists of values proportional to the local variation within each pixel 
neighborhood, as defined by the support of the structuring element. The binary edge map is obtained by thresholding 
the edge intensity map and selecting the pixels with exhibit a strong color (value) variations, measured by important 
values of the morphological gradient.  
 A typical edge extraction result by the described method is presented in figure 2. 
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A  

Original image  
(“peppers”, 256 x 256 pixels) 

B  
Morphological gradient  

  
c 

Edge-intensity map extracted by the morphological 
gradient form the original image. 

d  
Binary contour map obtained by thresholding the edge-
intensity map from figure 6. One can notice the good 

extraction of visual significant contours between different-
colored components from the original “peppers”  image. 

Figure 2. 
Morphological edge extraction for “peppers” image  

 
In the end we can calculate a first geometric shape descriptor named isoperimetric shape ratio. This function is 

independent with respect to the scaling operations and is defined as the ratio between the surface and its squared 
perimeter of the objects in the binary contour map: 

S
k = 2P

 

The k-ratio increases as the shape of the objects becomes more regular. k is maximum for a circular objects 
and decreases as the shape of the objects becomes linear. Although the k-ratio is not a bijective function this choice 
proved to be correct for reduced color ordering as it is dependent to the color hue and  also luminance invariant by 
definition. The isoperimetric shape ratio can be calculated as a 3-component vector for corresponding to the 3 
components of  color space: 

 

, ,
 
 
 
 

l s h, , ) =l s h
l s h

S S S
k = (k  k k 2 2 2P P P
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