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1. Segmentation in image processing 
 
Image segmentation methods, as well as the associated mathematics models have constantly evolved in the 

last decades. From the first and very simple image segmentation made through a common threshold we can count, 
today, over one thousand of algorithms proposed in the literature about segmentation. However, these segmentations 
algorithms are usually structured around four main steps: 

 
0. The datum of a perception space, which may embed the usual physical space and time, and possibly other 

feature spaces like histograms, textures or orientations; 
1. The choice of a criterion that translates what we mean by "homogeneous region" (in the current case); 
2. The partitioning of the perception space into zones that are homogeneous according the previously defined 

criterion; 
3. The maximization of all possible partitions. 

 
Because in some cases like microscopy, human perception may be totally meaningless while image 

processing demands quantitative analysis, we can skip the first “0” step and describe the segmentation algorithm from 
the next step: the choice of a criterion. 

 
1.1. The 1st step: the definition of a criterion 
 

We choose to classify the pixels according to the criterion of  flat zones that we had already in mind (for 
other cases, color, shape, or other criteria could be more convenient). 
Criterion definition: Given a class of Φ functions from set E into set T, a criterion σ is a binary function  
σ:Φ⊗Π(E)→[0,l] defined like: 
 
 

σ [f,A] = 1 when the criterion is satisfied over A  
 
σ [f,A] = 0 when not, 
 
 
∀ f ∈Φ, ∀ A ⊆ E. 

 
Examples:   
 

• The flat zones of function  f  (i.e. the zones where the function is constant) 
• A threshold (i.e. the zones where the function is above a given value) 
 

1.2. The 2nd step: the definition of a partition 
 

In the second step we replace the pixels by a partition of the space into regions or classes. 
 
Partition definition: A partition of space E is a mapping D:E→Π(E) that associates with each pixel x to the class D(x) 
it belongs, such that: 
 

 
(i)  the space is covered: ∀ x∈E ⇒ x∈D(x) 
 
(ii)  there is no overlapping: for all (x, y)∈E  
 

either D(x) = D(y) 
or     D(x) ∩ D(y) = {∅} 
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1.3. The 3rd step: the maximum partition 
 

In the third step we search  among all partitions of the space into regions that fulfill the "flat zones" 
criterion, if there is a larger one satisfying this criterion. First of all, we must determine if such a largest partition 
always exists. That means that we must answer to the following two questions: 
1. Does the "the largest partition" of a family exists? The answer is positive because the partitions of a set E do 

form a complete lattice. 
2. Is the largest partition of a family an element of the defined family?  The answer is uncertain and we must 

determine later by further computing methods. 
 
 
Partition Lattice 
 
 We can say that a partition is larger, or is the largest one, because of the: 
 
Proposition 1:  The partitions of  E form a complete lattice ∆  for the ordering relationship defined as:  

• Partition D is smaller than D' (D < D') when each class of D is included in a class of D'. 
 
Prof:  Indeed, ∀ D, D' partitions of  E  they can be compared by the above ordering relationship and also the largest 
element of D is E itself  and the smallest one is the decomposing of E into all its points. 
 

 
 

The sup is the pentagon with common boundaries. The inf, simpler, is obtained by intersecting the cells. 
 
 

The answer to the second question cannot be always positive as we can see in the next two contra examples: 
 

a) Lipschitz function definition: A function  f  is Lipschitz of parameter k when | f(x)-f(y)| ≤ k d(x,y).  

This function is Lipschitz  
in the left part 

 

This function is Lipschitz  
in both left and right part 

 

This function is Lipschitz  
in both left and right part but not inside 

both parts.  
Therefore there is no largest partition!

 

b) Thick flat zones case. Definition: ∀ x, y∈A ⇒ | f(x)-f(y)| ≤ k  
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b1)  
The blue segment fulfils the criterion 

b2)  
The blue segment fulfils the criterion 

The red segment also fulfils the criterion 

 

 

 
b3)  

The blue segment fulfils the criterion 
The red segment also fulfils the criterion  

But their union does not fulfil the criterion. 
Therefore there is no largest partition! 

Thin flat zones case 
However, for k=0, we find the usual flat zones :  

∀ x, y∈A ⇒ | f(x)-f(y)| ≤ 0 
Then the largest partition exists and is composed of  the 

red segments of the constant regions or the points, 
elsewhere. 

 

 
 
2. Connection 
 
Definition: Let E be an arbitrary space. We call connected class, or connection Χ any family in Π(E) such that: 

 
i) { ∅ } ∈Χ; 
 
ii) ∀ x∈E ⇒ { x }∈ Χ; 

 
( class Χ contains always the singletons, plus the empty set) 
 

iii)  ∀ { Ai }, Ai ∈Χ : { Ι Ai ≠ ∅ }  ⇒  { Υ Ai∈ Χ }; 
 
(the union of elements of Χ whose intersection is not empty is still in Χ)  

 
The elements C ∈Χ, are said to be connected. 
Although such a definition does not involve any topological background, both topological and arcwise 

connectivities are particular connections. 
 

2.1. Point connected opening 
 

Given a set A and a point x∈A, we consider the union γx(A) of all connected components containing x and included 
in A 

 
γx(A)  = Υ { C | C ∈Χ , x∈C ⊆ A } (1) 

 
Theorem of the point connected opening:  The family {γx, x∈E} is made of openings, called point connected opening, 
such that: 

i) γx(x)={x},  x∈E 
ii) γy(A) and γz(A) y,z∈E,  A ⊆ E    are disjoint or equal 
iii) x∉A  ⇒  γx(A) = { ∅ } 

and the datum of a connected class Χ  on Π(E)  is equivalent to such a family. 
 
In other words, every Χ  induces a unique family of openings satisfying i) to iii), and the elements of Χ  are the 

invariant sets of the said family {γx, x∈E}. 
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2.2. Connection by partitioning 
 

Given a partition D of space E, all subsets of all classes {D(x), x∈E} form a family closed under union. Hence 
we have the connection: 

Χ = {A Ι D(x),  x∈E,  A∈Π(E)} 
 

The connected component γx(A), x∈E, equals the intersection A Ι D(x) between A and the class of the partition 
at point x. 
 
 

 
 
 

2.3. Properties of the connections. The partitioning theorem 
 
Arc generalization: Set X is Χ-connected iff for all points y and z of X we can find a Χ-component Y included in X 
and that contains y and z. 
Connection partitioning theorem: Let Χ be a connection on Π(E). For each set A∈Π(E) the maximal connected 
components included in A, partition A into its connected components. This partition is increasing in that if A⊂A', 
then any connected component of A is upper bounded by a connected component of A'. 
 
Lattice of the connections: The set of the all connections on Π(E) is closed under intersection; it is thus a complete 
lattice in which the supremum of a family {Χi ; i ∈ I} is the least connection containing ΥΧi,  

inf {Χi } = ΙΧi,    and      sup{Χi } = Χ{ΥΧi } 
Proof: Let’s start from the point opening defined in equation (1) γx(A)  = Υ { C | C ∈Χ , x∈C ⊆ A } 
1) As point x spans set E, we have, for all A ∈Π(E) 

Υx∈E [ γx(A)] ⊇  Υx∈E Υa∈E [ γx(a)] =  Υ a∈E Υ x∈E [ γx(a)] = A (2) 
Hence  

Υx∈E [ γx(A)] = A (3) 
so that the γx(A) partition A. 
2) Consider another partition of A into A'j∈Χ, each x belongs to one Ai and one A'j, hence to AiΙA'j, so that 

AiΥA'j is connected.  
It follows from (1) that Ai ⊇AiΥA'j, hence A'j ⊆ A, therefore the γx(A) produce the largest connected partition of A. 
3) This partition is increasing because if x=Ai=γx(A) then A ⊆ B,  implies x∈γx(A) ⊆ γx(B)  but is precisely a 

connected component of B. 
3. Segmentation 
 

Let E and T be two arbitrary sets. Let class Φ be a family of functions  f : E →T, and    be a criterion. 
Given a function f ∈Φ  let {Di ( f )} be the family of all partitions of set E  into homogenous zones of f according 

to criterion σ. 
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Definition of segmentation: We say that criterion σ segments class Φ  when for each function  f ∈Φ , with property 
σ[ f,{x}]=1,  ∀ x∈ E, the family {Di ( f )} admits a supremum ν{Di ( f )}. Then the partition ν{Di ( f )} defines the 
segmentation of  f  with respect to σ. 
 

The segmentation D = ν{Di ( f )} decomposes set E into zones that are: 
 

• disjoint and cover the whole space E 
 

• where function f is homogeneous according to criterion σ 
 

• and where the class of the partition at each point is the largest possible one that satisfies criterion σ 
 
 
 

For using this notion in practice, we need a theorem that links the concept of a segmentation with tools we 
can handle, unless we accept to check all possible partitions for each function f. 

The convenient notion turns out to be that of a connection. 
 

3.1. Connective criterion 
 

It remains to introduce the last piece of the puzzle, namely the following connection property for criteria. 
Connective criterion: A criterion σ is connective when for any family {Ai} and any function f ∈Φ we have: 

1) σ[ f,{x}]=1 for all x ; 
2) Ι Ai ≠ {∅}  and   σ[ f, Ai]=1 ⇒ σ[ f, ΥAi]=1 

More explicit we can say when  f satisfies σ on A and on B, and when A and B have at least one common point, then 
f satisfies σ on A Υ B. 
Observation: Flat zones, zones above a given threshold, etc. are connective, but Lipschitz criterion is not connective. 
 

3.2. The segmentation theorem 
 
Theorem: Given a criterion σ on Φ⊗Π(E), the three following statements are equivalent:  
 

1) Criterion a is connective; 
2) Given f ∈ Φ, the class of those sets on which criterion a is satisfied forms a connection Χ; 
3) Criterion σ segments all functions  f ∈ Φ. 

 
 
Observations:     
 
 
¾ The concept of a connection is exactly right for the theorem to work. 
¾ If set E was not previously provided with a connection, then criterion σ provides E with a connection, Χ say. 
¾ Conversely, if space E was initially provided with connection Χ’ then the intersection Χ∩Χ’generates the 

maximum partition for the intersection of the two constraints. 
 
 
 

3.3. Comments on segmentation theorem 
 
 
¾ The theorem links segmentation with the connective property of the criterion, that we can more easily handle 

(1st  —> 2nd moment)  
 
¾ Remarkably, it is possible to identify the notion of segmentation with some families of connections without 

having equipped neither the starting set E, nor the arrival one T, with any property. 
 
¾ Indeed, theorem opens the way to all applications where heterogeneous variables are defined over the space. 

This circumstances arise for example: 
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o in color imagery, with the hue, or  
o in geography, where radiometric data (satellite images) live together with physical ones (altitude, slope of 

the ground, sunshine, distance to the sea, etc.) and with statistical data (demography, fortunes, diseases, etc.). 
 
¾ It will be possible to make precise the segmentation theorem 

o by classifying the connective criteria, and by giving a few examples of them  
o by analyzing the interactions between working field and segmented objects and 
o above all by listing and describing the various techniques it provides for combining criteria, namely : 

� intersection and union of criteria (infinimum and supremum in the convenient lattice); 
� ordered segmentations by multiple criteria; 
� composition products ( connected operators).  

 
 

3.4. Connected operators 
 

Suppose that a first mapping ψ:Φ→Φ acts on function  f  prior to its segmentation. Then the pair {σ, ψ}, 
considered as a whole, defines the criterion 

σ[ψ( f ),A] = 1 or 0. 
Property:  σ  connective  ⇒  {σ, ψ} connective  as( ψ(Φ) ⊆Φ ). 
 
Definition:   Operator ψ is said to be connected when 

σ[f ,A] = 1   ⇒   σ[ψ( f ),A] = 1 
 
Property: when ψ is connected, the segmentation partition of  f  according to {a, iff}, is larger than that by σ (some 
classes are clustered). 
 

3.5. Opening by reconstruction 
 
The basic connected operator is «the opening by reconstruction of g inside f » 

 
3.6. Hierarchies of connected operators 

 
Increasing semi-groups. Let ψ and ψ’ be two connected operators. We have  

σ[f ,A] = 1    ⇒   σ[ψ( f ),A] = 1    ⇒   σ[ψ’ψ ( f ),A] = 1 
i.e. ψ’ψ is connected, and the connection (σ, ψ’ψ) contains (σ, ψ). 

This suggests to introduce the following increasing semi-groups {ψλ, λ ≥ 0} where the product ψν=ψλψµ 
acts more than each of its factors, i.e. such that 

 
 

1) ∀ λ, µ ≥ 0   ⇒ ν ≥  sup(λ, µ) 
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2) ∀ ν ≥ λ ≥ 0 there exists µ with ν ≥ µ ≥ 0 such that ψν=ψλψµ 
 
 
 
Property: A semi-group of connected operators is increasing iff the family {(σ,ψλ), λ ≥ 0} is totally ordered in the 
lattice of the connective criteria (or of the corresponding connections).  

Then the segmentations of function f  by the (σ,ψλ) increase with λ and the set of the contours decreases. 
 

3.7. Examples 
 

Band segmentation intersection 
 

a) 
Original HSV image 

b) 
Hue band segmentation 

c) 
Value band  segmentation  

d) 
Hue -Value intersection 

 
 

Hierarchical lasso 
Goal: To adapt an rough manual contouring to the actual contours of the object. 
Implementation: Take the union of the largest classes of the hierarchy that are inside the manual contour. 

 

 
a) 

Rough manual contour 
b) 

Result by hierarchy 
c) 

Result by Photo Paint 
 

Magic wand  
 

Goal: To extract a region of uniform color.. 
Implementation: In the hierarchy, take the largest class at point x whose average color lies between given bounds. 
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a) 

Original image 
b) 

Hierarchical magic wand 
c) 

Photo Paint magic wand 
 
 
4. Color image segmentation 
 

4.1. Color jump connection 
 

Jump connection: In the case of color images the set E represents Ρn, provided with the arcwise connection, 
and function f : E → T is fixed. The class  Χ∈Π(Ρn) which is composed of  

i) the singletons plus the empty set, 
ii) all connected sets around each minimum and where the value of f is less than k above the minimum,  

forms a second connection on Π(Ρn), called "jump connection from minima"(respectively  maxima) 
One can combine the two connections from maxima and minima 
 

 
 

A connected component in the jump connection of range k from the minima 
 

 
 
 
 
 
 

4.2. Iterated jump connection 
 

Such iterations result in a an optimal mixed segmentation. The algorithm for implementation of this 
segmentation can be described as: 
 
1. Segment  f  by a jump connection and let be S1 the singleton zone. 
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2. Restrict  f  to S1 ⇒   the result function f1 will be subsequently segmented according  to the same jump 

connection, hence S2, and f2 , etc... 
 
3. For the sake of self duality,  we can use both extrema and progress upwards and downwards. 
 
 
 

 
 

Iterated jump connection  
 

4.3. Color gradients 
 

In Ρn, in order to determine the modulus of the gradient, at point x, of a differentiable function f  we use: 
(incr f)(x) = ∨[{| f(x) - f(y)|,  y ∈ Br(x) }] / r  

 
where Br(x) is a small ball centered at x with radius r. The gradient is then the limit, denoted α(f), of incr f  as r →0. 

By introducing the Minkowski dilation δr and erosion εr by Br we obtain the equivalent definition  
incr f = [(δr ( f )- f) ∨ ( f - εr ( f ))] / r  

 
In the digital 2-D space Ζ2, this last relation gives α(f) by taking r = l and by replacing Br by the unit square or 

hexagon K. 
 

4.4. Gradients with values on Χ 
Let h : E →Χ be an angular function, such as the hue. As the definition of the gradient involves increments 

only, it can be transposed to h by replacing |h(x) - h(y)| by the acute angle |h(x) ÷ h(y)|.  
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This leads to the new expression definition: 
 

(incr h)(x) = ∨[{|h(x) ÷ h(y)|,  y ∈ Br(x) }] / r  
 

and in the digital 2-D space, to the digital circular gradient: 
 

α(h) = [(δr (h ) ÷  h) ∨ ( h ÷  εr (h))] / r  
 

which is invariant under rotation on the unit circle. 
 

 

 

a) Original image 
 
 

 

 
b) Hue band  

 
c) Ordinary hue gradient 

 
d) Circularly hue gradient 

 
 
 

4.5. Synthetic numerical axis 
 

In case of HLS representation of color image : all operators combining L, s and the increments |h(x) ÷ h(y)|,  
x,y ∈E are independent of the origin of the hue. 
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Synthetic gradient definition: If we take the two gradients  
 

α(h) = (δ(h ) ÷  h) ∨ ( h ÷  ε(h))   
 

α(L) = (δ(L ) -  L) ∨ ( L -  ε(L))  
 
of the luminance and the hue, and weight their barycentre by the saturation s we obtain the  synthetic gradient: 
 

β = s·α(h) + (1- s)·α(L)                0 < s < 1  
 

 
The  synthetic  gradient  mixes  the  hue  variations  with  those  of  the  luminance 

 

 
a) Rotation invariant hue gradient  

 
b) Saturation weighted synthetic 

gradient 
 

c) Gradient of the luminance 
 

 
 

4.6. Segmentations by gradient watersheds and waterfalls 
 

The purpose of this section is to segment color images following the planning: 
 

1. Use the conic HLS space (because prove to be more consistent) 
2. Compare the watersheds of four gradients 
3. Watershed lines of a gradient 

a. build a scalar gradient of the color image 
b. possibly filter the gradient function 
c. compute the gradient watershed 
d. pursue by a pyramid of watersheds 

4. Compare three saturations for the best gradient 
 
 

The module of the gradient for the color function f at pixel x, ∇f(x), combines differences between the color 
at point x and in its unit neighborhood K(x). 

The definitions for the gradient module used here are the following: 
 

1. Luminance Euclidean gradient 
∇L f(x) = ∇L  f(x) 
 

2. Color sat-weighted gradient in conic HLS  
∇S f(x) = fS×∇c  fH(x)+( fS

c)×∇  fL(x) 
 

3. Color sup gradient in conic HLS  
∇supf(x) = ∨ [∇c  fH(x), ∇  fL(x), ∇  fS(x)] 

 
4. Euclidean gradient in Lab  

∇Pf(x) = ∇E ( fL,  fa, fb )(x) 
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Examples 
 

 
 
Watershed connection algorithm: 
 
 
1. Suppose that holes are made in each local minimum and that the surface is flooded from these holes.  

2. Progressively, the water level will increase.  

3. In order to prevent the merging of water coming from two different holes, a dam is progressively built at 

each contact point.  

4. At  the   end,   the  union   of all   complete   dams  generates  the watersheds. 
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4.7. Hierarchical segmentation 
 

The aim of image segmentation is partitioning images into disjoint regions whose contents are homogenous 
in color, texture. 

 
Multiscale segmentation:  
 
 
• The partitions family is composed of a hierarchical pyramid with increasing partitions. 
 
• Here we use the waterfall algorithm, i.e. a non-parametric pyramid of watersheds, comparing different color 

gradients 
 
• This approach involves a color representation based on hue, brightness, saturation, where the saturation 

component plays an important role for merging both chromatic and achromatic information. 
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Discussion 
 

• The luminance alone (∇L) generates poor segmentations. 
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• Visually, the most contrasted gradient is HLS-supremum ∇sup, it also yields better segmentations than the only 
luminance ∇L , as well as the perceptual ∇P.  

 
• Finally, the best partitions are obtained by using the saturation weighted gradient. However, they still are 

over-segmented.  
 

• To which extend does the choice of the saturation determine the quality of the segmentation? 
 
 

4.8. Two-levels mixed segmentation 
 
The goal of this application is to segment the head and the bust. 
The following color/shape segmentation algorithm, proposed by Ch. Gomila, is a two-levels mixed 
segmentation: 
 

 
1. The image under study is given in the standard color video representation YUV: 

 
Y = 0.299r'+0.587g'+0.114b'  
 
U = 0.492(b'-y')  
 
V=0.877(r'-y'). 

 
 
 
2. A previous segmentation resulted in the tessellation depicted here in false color. For the further steps, this 

mosaic becomes the working space E, whose "points" are the classes of the mosaic; 
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3. Classical studies have demonstrated that, for all types of human skins, two chrominances U and V 

practically lie in the sector region depicted in a). By thresholding the initial image by this sector, we obtain 
the set b), whose a small filtering by size suppresses the small regions, yielding a marker set; 

 
 
4. Segmentation by color: All "points" of E that contain at least a pixel of the marker set, or of its symmetrical 

w.r.t. a vertical axis are kept, and the others are removed: this produces the opening γ1(E) depicted in b) ; 

 
 
5. Segmentation by shape: For the bust, an outside shape marker made of three superimposed rectangles is 

introduced. All their pixels that belong to a "point" of γ1(E) are removed from the bust marker, since this 
second marker must hold on E \ γ1(E) only. That is depicted in b), where one can notice how much the upper 
rectangle has been reduced; the associated opening γ1[E \ γ1(E)] is depicted in c); 

 
 
6. Final result: The union γ1(E) Υ γ1[E \ γ1(E)] defines the zone inside which the initial image is kept, as 

depicted in b)  
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